产品中心PRODUCT CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心

首页-产品中心-交互声学回声产品介绍

交互声学回声产品介绍

更新时间:2025-08-24      点击次数:0

    如果设置nlp_mode=kAecNlpAggressive,α大约会在30左右。如果当前帧为近端帧(即echo_state=false),假设第k个频带hNl(k)=,hNl(k)=hNl(k)^α=,即使滤波后的损失听感上几乎无感知。如图8(a),hNl经过α调制之后,幅值依然很接近。如果当前帧为远端帧(即echo_state=true),假设第k个频带hNl(k)=,hNl(k)=hNl(k)^α=,滤波后远端能量小到基本听不到了。如图8(b),hNl经过α调制之后,基本接近0。经过如上对比,为了保证经过调制之后近端期望信号失真小,远端回声可以被抑制到不可听,WebRTCAEC才在远近端帧状态判断的的模块中设置了如此严格的门限。另外,调整系数α过于严格的情况下会带来双讲的抑制,如图9第1行,近端说话人声音明显丢失,通过调整α后得以恢复,如第2行所示。因此如果在WebRTCAEC现有策略上优化α估计,可以缓解双讲抑制严重的问题。延时调整策略回声消除的效果与远近端数据延时强相关,调整不当会带来算法不可用的风险。在远近端数据进入线性部分之前,一定要保证延时在设计的滤波器阶数范围内,不然延时过大超出了线性滤波器估计的范围或调整过当导致远近端非因果都会造成无法收敛的回声。先科普两个问题:。1)为什么会存在延时?首先近端信号d。

   实现对整个声学回声路径的变化进行有效跟进。交互声学回声产品介绍

    噪声抑制和声源分离同属于语音增强的范畴,如果把噪声理解为广义的噪声三者之间的关系,噪声抑制需要准确估计出噪声信号,其中平稳噪声可以通过语音检测判别有话端与无话端的状态来动态更新噪声信号,进而参与降噪,常用的手段是基于谱减法(即在原始信号的基础上减去估计出来的噪声所占的成分)的一系列改进方法,其效果依赖于对噪声信号估计的准确性。对于非平稳噪声,目前用的较多的就是基于递归神经网络的深度学习方法,很多Windows设备上都内置了基于多麦克风阵列的降噪的算法。效果上,为了保证音质,噪声抑制允许噪声残留,只要比原始信号信噪比高,噪且听觉上失真无感知即可。单声道的声源分离技术起源于传说中的鸡尾酒会效应,是指人的一种听力选择能力,在这种情况下,注意力集中在某一个人的谈话之中而忽略背景中其他的对话或噪音。该效应揭示了人类听觉系统中令人惊奇的能力,即我们可以在噪声中谈话。科学家们一直在致力于用技术手段从单声道录音中分离出各种成分,一直以来的难点,随着机器学习技术的应用,使得该技术慢慢变成了可能,但是较高的计算复杂度等原因,距离RTC这种低延时系统中的商用还是有一些距离。噪声抑制与声源分离都是单源输入。

     湖北声学回声私人定做非线性声学回声消除技术在整个声学回声消除领域是一个相对比较冷的研究方向。

    n)为加混响的远端参考信号x(n)+近端语音信号s(n)。理论上NLMS在处理这种纯线性叠加的信号时,可以不用非线性部分出马,直接干掉远端回声信号。图7(a)行为近端信号d(n),第二列为远端参考信号x(n),线性部分输出结果,黄色框中为远端信号。WebRTCAEC中采用固定步长的NLMS算法收敛较慢,有些许回声残留。但是变步长的NLMS收敛较快,回声抑制相对好一些,如图7(b)。线性滤波器参数设置#defineFRAME_LEN80#definePART_LEN64enum{kExtendedNumPartitions=32};staticconstintkNormalNumPartitions=12;FRAME_LEN为每次传给音频3A模块的数据的长度,默认为80个采样点,由于WebRTCAEC采用了128点FFT,内部拼帧逻辑会取出PART_LEN=64个样本点与前一帧剩余数据连接成128点做FFT,剩余的16点遗留到下一次,因此实际每次处理PART_LEN个样本点(4ms数据)。默认滤波器阶数为kNormalNumPartitions=12个,能够覆盖的数据范围为kNormalNumPartitions*4ms=48ms,如果打开扩展滤波器模式(设置extended_filter_enabled为true),覆盖数据范围为kNormalNumPartitions*4ms=132ms。随着芯片处理能力的提升,默认会打开这个扩展滤波器模式,甚至扩展为更高的阶数。

   

    就得到了非线性滤波器的比较好解,它具有小二乘估计形式。第三步构建耦合机制。在介绍耦合机制之前,先说一下我对这种耦合机制的期望特性。我希望在声学系统的线性度非常好的情况下,线性滤波器起到主导作用,而非线性滤波器处于休眠的状态,或者关闭的状态;反过来,当声学系统的非线性很强时,希望非线性滤波器起到主导作用,而线性滤波器处于半休眠状态。实际声学系统往往是非线性与线性两种状态的不断交替、叠加,因此我们希望构建一种机制来对这两种状态进行耦合控制。为了设计耦合机制,就必须对线性度和非线性度特征进行度量。因此,我们定义了两个因子,分别是线性度因子和非线性度因子,对应左边的这两个方程。而我们进行耦合控制的基本的思想就是将这两个因子的值代入到NLMS算法和小二乘算法之中,调整二者的学习速度。为了便于大家对双耦合声学回声消除算法有一个定性的认识,我又画了一组曲线,左边一组对应的是线性回声的场景。我们首先来看一下NLMS算法,黄色曲线真实的系统传递函数,红色曲线是NLMS算法的结果。可以看到,在线性场景下,NLMS算法得到的线性滤波器可以有效逼近真实传递函数,进而能够有效抑制线性声学回声。下面再来看一下这个双耦合算法。

     右边的非线性声学回声场景。

    这样有助于扩散或展开室内的声音,如图3所示。不要过多地填满泡沫材料,因为填满了的、“死寂”的房间对演奏来说是很不合适的,而保留一些反射声后能给声音加上“空间”和活泼的感觉。其他高频吸声体有睡袋、活动毯子、地毡毛毯、窗帘以及用细薄的棉布或粗麻布罩住的玻璃纤维等。如有可能,把这些材料与墙面之间留有数英寸的空间。这种间距会有助于吸收中低频率成分。有一种宽频段的吸声体,它是罩有细薄棉布或粗麻布的已压制好的(Owens-CorningType703,3lb/ft3)。首先在要进行录音的演奏者的前方或上方只安置一小部分吸声材料,每次只增加一些吸声体,直到所录得的声音满意时为止——通常覆盖总表面的50%~60%。吸声位置位于从混录位置方向观察为音箱的镜像位置上。吸声体置于音箱后面的墙上,也可把吸声板吊挂在混录位置与音箱之间半路中心的上方,用吊钩和线绳悬挂。另一种吸声体为位于传声器附近的安装的声学板。例如ModTrap及sERelexion滤波器。声学基本概念,你知多少?1.吸声声波通过某种介质或射到某介质表面时,声能减少并转换为其他能量的过程称为吸声。2.吸声的作用对同一个空间,改变室内声场的特性。吸声的主要作用是吸收室内的混响声,对直达声不起作用。

    深入浅出 WebRTC AEC(声学回声消除)。河北识别声学回声产品介绍

搜索“声学回声消除”的相关文献。交互声学回声产品介绍

    首先是优化准则。NLMS算法是基于小均方误差准则,而双耦合算法是基于小平均短时累计误差准则,所以他们的优化准则是不一样的。第二个就是理论的比较好解,NLMS算法具有Wiener-Hopf方程解,而双耦合算法的线性滤波器也具有Wiener-Hopf方程解,非线性滤波器具有小二乘解。第三个维度就是运算量,NLMS运算量是O(M),M是滤波器的阶数,而双耦合算法运算量后面会多一个O(N2),因为他有两个滤波器,N是非线性滤波器的阶数,这里的平方是因为小二乘需要对矩阵进行求逆运算,所以它的运算量比线性的NLMS运算量要大很多。第三个就是控制机制,NLMS算法只有一个滤波器,它的控制主要是通过调整步长来实现的,控制起来要相对简单。而双耦合算法需要对两套滤波器进行耦合控制,控制的复杂度要高很多。实验结果分析,这里我主要是分了两个实验场景比较双耦合算法和NLMS算法的性能,个是单讲测试场景,第二个就是双讲测试场景。首先看一下单讲测试场景,个示例是针对强非线性失真的情况,左边分别原信号的语谱,NLMS算法进行回声消除之后的语谱、双耦合算法的语谱。颜色越深,能量越大。右边这个的是回声抑制比,值越大越好,红色的曲线是双耦合算法的回声抑制比。

    交互声学回声产品介绍

深圳鱼亮科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的通信产品行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为行业的翘楚,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将引领深圳鱼亮科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   深圳市鹏立诚商务服务有限公司  网站地图  搜狗地图  移动端